阿尔茨海默病中三叉神经本体感觉平衡引起的中枢协同效应:病例报告
抽象的
这位患有阿尔茨海默病的患者接受了神经心理学评估和功能性磁共振成像研究,研究对象为咬合本体感受失衡和重新平衡状态。研究人员进行了扫视和瞳孔测量视频眼科检查,以检测连接的三叉神经本体感受运动模式,这些模式能够干扰与阿尔茨海默病中过早改变的视觉和程序过程相关的小脑网状结构功能。
一名 66 岁的白人男性患有阿尔茨海默病,并获得了阿尔茨海默病评估部门出具的神经心理学评估,他接受了咬肌肌电图检查,以评估其功能平衡。患者双侧下颌磨牙缺失。牙齿咬合时肌电极度不对称,提示通过同时经皮刺激三叉神经的下颌上和下颌下运动支,可以重新平衡咬肌功能。上述方法可以检测对称的颅颌肌肉关系,这种关系可以通过使用模仿下牙弓的尖牙咬合来保持不变,这被称为矫正-同向咬合。几天后,患者接受了新的神经心理学检查,以及功能性磁共振成像研究,以及咬合不平衡和重新平衡条件下的扫视、瞳孔测量视频眼科检查。
比较数据分析表明,重新平衡咬合状况可以改善患者的认知注意力功能。此外,扫视和瞳孔测量视频眼科检查已被证明可用于分析网状小脑皮层下系统(阿尔茨海默病中过早改变)和实施神经学评估。
介绍
越来越多的证据表明,拔牙对老年大鼠有影响,表现为空间记忆力下降、顶叶皮质乙酰胆碱释放减少 [1]、隔海马胆碱能系统改变 [2],而 Yamazaki 等 [3] 已证实拔牙数量与空间记忆力下降和 trkB 信使核糖核酸 (mRNA) 水平降低成正比。此外,针对 50 至 80 岁年龄段人群的流行病学调查和横断面研究表明,咀嚼能力下降或牙齿功能障碍可诱发衰老过程或海马神经元退化,导致认知功能和学习效果下降 [4,5]。基于这些发现,人们开展了研究,以验证牙齿咬合肌电不对称的重新平衡是否可以改变认知注意参数,即使是在患有阿尔茨海默病 (AD) 的受试者中也是如此。根据上述发现,一份病例报告随机选择仅设想了双侧所有下磨牙缺失,神经心理学评估为平均严重程度。此外,还进行了计算机化的扫视和瞳孔测量视频眼科评估,以了解它们的认知注意和记忆性质 [6]。这些检查还允许分析与视觉运动和程序过程相关的网状结构和小脑核的反应,这些反应在 AD 中过早改变 [7,8]。
病例介绍
患者为 66 岁的白人男性,在阿尔茨海默病评估中心 (AEU) 接受了神经心理学评估,简易精神状态检查 (MMSE) 值为 18/30。神经心理学最终报告真实引用,并忠实地遵循了 AEU 医生的描述,报告内容如下:“目前的情况表明患者合作性较差,在进行测试时注意力不集中,需要提醒患者注意给定的指示。语言能力显著下降,表达和理解能力下降,限制了患者的自主性。执行功能恶化,难以计划和执行甚至简单的活动,难以解决问题。这说明工具性活动明显减少,需要帮助。必须继续使用抗胆碱酯酶和抗氧化剂治疗”(表 1)。为了评估咬合肌活动,使用表面 Ag/AgCl 电极记录了咬肌的双侧肌电图 (EMG)。按照牙科诊断方案 [9,10],通过肌肉肌电图对患者习惯性牙齿咬合时的肌电活动进行初步评估,以评估其功能平衡,因为患者双侧缺失所有磨牙、第二前磨牙和右侧内侧门牙。记录值显示咬肌功能明显不对称:左侧咬肌为 10 mV,右侧咬肌为 111 mV(图 1)。根据表达的肌电图值,通过对咬肌进行 15 分钟的低频三叉神经运动支经皮刺激和对下颌拮抗肌进行中频刺激,使肌肉活动对称。该方法允许检测咬合提升肌的功能轨迹,并通过在牙弓之间放置自硬材料来记录对称的颅颌关系。随后,使用相同的材料制作了模仿下颌牙弓的尖牙咬合,这种咬合因特别使用电刺激而被称为矫正-同向咬合。当应用矫正器时,重复肌电图控制以验证咬合肌电平衡。显示的值基本相等:左侧咬肌为 55 mV,右侧咬肌为 60 mV(图 2)。
图 1
习惯性咬合时咬肌肌电图(EMG)值:左侧肌电活动10mV,右侧肌电活动111mV。
图 2
习惯性咬合时咬肌肌电图(EMG)值:左侧肌电活动55mV,右侧肌电活动60mV。
随后立即进行扫视、瞳孔测量和功能性磁共振成像 (fMRI) 检查,首先在习惯性咬合下,然后很快佩戴矫正器;几天后,患者再次接受神经心理学评估。所使用的扫视视频眼科系统 (图 3) 由计算机化的眼动追踪系统组成,眼动追踪采集时间不到 100 毫秒。它能够在时空图上测量观察患者的点和目标所在点之间的距离。该系统可以评估 16 个点的目标/眼球连贯性,显示具有不同延伸漂移的低测量和高测量错误以及带有矩形的患者的总视觉注意力不连贯性。扫视测试计算不允许助记效应的可变目标路线。事实上,在咬合不平衡条件下,视频眼科程序记录了 16 个检测点中的 12 个完全的目标/眼睛不一致(图 4),而在重新平衡条件下仅报告了两个错误(图 5)。瞳孔直径评估使用角膜地形图仪进行测量,该角膜地形图仪由带有 Placido 盘(24 个环)的测量部分、工作距离为 56 毫米的电荷耦合器件 (CCD)1/3 相机传感器以及恒定光和下巴支撑组成。给出的认知任务是一项感知运动实践测试,名为 TanGram,由三角形、正方形和平行四边形几何形状的拼图组成(图 6)。患者之前已了解了如何进行测试,他必须在没有视觉支持的情况下,将拼图元素从操作员的右手中取出并放入其特定位置。采用的方案是在开始盒子中的现场探索后仅两秒就提供了瞳孔直径测量结果(首先是基底直径,然后在认知任务期间)。瞳孔测量记录更有趣,因为当患者进行 TanGram 测试时,他的生理倾向伸展的基底瞳孔直径(2.65 毫米)(图 7)减少了 -0.21 毫米(2.44 毫米)(图 8),而在咬合重新平衡条件下,瞳孔测量增加 +0.58 毫米(3.14 毫米)(图 9 和 10),与文献中先前报告的一致(表 2)。在非平衡和重新平衡条件下进行的 fMRI 结果已联合报告,它们准确地指的是:“所进行的检查类型:直接大脑 RM。患者合作性较差。没有明显的扩散受限区域。可以在脑室周围和皮层下区域检测到一些与旧血管问题相关的神经胶质增生征兆的病灶。脑幕下区域信号改变不显著。脑室腔宽度增加,特别是左枕角和蛛网膜下腔,且萎缩。由于患者无法正确执行任务,因此无法通过右手指敲击激活运动区来进行功能研究。在三叉神经刺激和牙齿咬合应用后,由于患者配合度提高,即使无法正确激活相关运动区,因为给定的命令与获取不同时执行,功能研究仍得以实现。
图 3
用于扫视测试的视频眼科系统:屏幕上出现的两个白点代表视网膜中央凹。
图 4
习惯性遮挡的视频眼科扫视测试:12 个方格。
图 5
矫正同向应用后的视频眼科扫视测试:两个方块。
图 6
用于认知任务的具有几何形状的 TanGram 盒子:三角形已被移除,以显示其重新定位的特定位置。
图 7
习惯性遮挡下的基础瞳孔测量;瞳孔直径:2.65毫米。
图 8
在习惯性遮挡下进行 TanGram 测试的瞳孔测量;瞳孔直径:2.44 毫米。
图 9
采用矫正同向瞳孔测量法进行基础瞳孔测量;瞳孔直径:2.62 毫米。
图 10
采用矫正同向应用的 TanGram 测试进行瞳孔测量;瞳孔直径:3.14 毫米。
最后,在应用矫正咬合后进行的神经心理学报告涉及以下内容:“神经心理学评估表明患者的协作能力更高,他在空间中定向良好,并表现出轻微的时间定向障碍。在理解简单命令方面有轻微困难,但执行更复杂的任务仍然有障碍。患者的短期和中期言语记忆广度和执行日常生活工具活动的自主性有所改善,仅在更复杂的活动中需要帮助。思维迟缓仍然存在。执行功能能力有所改善,特别是在计划、组织和解决问题的能力方面”,而重新平衡咬合中的 MMSE 值显示出显着改善(23/30),比之前研究的习惯性条件下的 18/30 高出 5 分(表 1)。
讨论
The results obtained in occlusal un-balance and re-balance conditions suggest that occlusal proprioceptive asymmetries can elicit central anisotropic effects characterized by minimum order configurations and minimum cortical-subcortical functional differentiations. Even if references to the literature are only indirect at the moment, in this case report the performed tests permit us to deduce that occlusal proprioceptive re-balance in the short/medium term can alter some central functional parameters. Overall, data analysis suggests that consistent effects are seen in the visual-spatial context, in the planning and execution of organization skills, while other functions, such as ideation, reasoning and execution of complex tasks, language and grammar complexity do not display significant results. Improved collaboration on the part of the patient during neuropsychological evaluation and in fMRI execution is a very significant element to take into account. With respect to this, the pupillometric exam can contribute to our understanding of the behavioral change on the part of the patient, because pupillary diameter variation represents an unequivocal evaluative element of the cognitive control state during an evoked task and it is strictly related to locus coeruleus (LC) tonic/phasic activity [11]. In fact, Cohenet al. have demonstrated that during task execution the anterior cingulate, orbitofrontal and prefrontal cortex stimulates LC phasic mode with norepinephrine release. This determines concomitant and immediate pupillary diameter increase, proportional to the released noradrenergic quantity [12]. A pupillometric reduction of −0.21 mm registered in occlusal un-balance during the test (Figures7and8) may be interpreted as the result of cortical strain [13], while a pupillometric increase of +0.58 mm registered in occlusal re-balance, with a basal pupillometric value of 2.62 mm (Figures9and10), is an index of unquestionable higher coerulean phasic expressivity. This is surprising because the LC is prematurely and deeply interested by AD degenerative processes [14], and it is also interesting with regard to basal reduction. Trigeminal neurophysiological mechanisms at the core of pupillometric clinical evidence cannot be exhaustively delineated at present, but some relationships among the trigeminal complex, coerulean system and reticular formation can be hypothesized. The literature mainly relates the projections and effects of the LC-norepinephrine system on trigeminal sensorimotor nuclei. Previous studies performed through anterograde and retrograde transport analysis have indicated that many of the regions that received dense inputs from the projected LC neurons, in turn, back upon these coerulei neurons [15], which are uniformly sensitive to a variety of non-noxious stimuli, including tactile, visual, auditory and taste with specific degree of activation stimulus, [16,17]. The trigeminal system is strictly connected with the LC and several works have proved that clusters of mesencephalic neuronal branches reach LC-pars compacta, which exhibit a mixture of cellular elements with trigeminal mesencephalic neurons, [15,18]. Couto et al. demonstrated with retrograde tract tracing using fast blue injections in spinal and principal sensory trigeminal nuclei, the presence of labeled trigeminal mesencephalic and cerulean neurons, [19]. Moreover, Pannetonet al. proved trigemino-autonomic connections, using herpes simplex virus 1 (HSV-1) (strain 129), with an anterograde transneuronal transport method that LC and paragigantocellularis nuclei were also labeled [20]. Seemingly, the LC can be activated by increasing the discharge frequency of trigeminal mesencephalic neurons activated both by masseter spindle receptors due to interocclusal excessive space [21], and by the periodontal for increased occlusal charge, with glutamate release for the activation of presynaptic γ-aminobutyric acid (GABAA) receptors, on the coerulean and peri-coerulean zone [22]. These conditions, characterized by neuromotor facilitation of the mastication preferential side, are inevitably associated with contralateral functional hypoactivity of the trigeminal nerve motor and mesencephalic nuclei. Occlusal motor-proprioceptive activity probably produces a concomitant and homolateral asymmetry of LC/noradrenaline (LC-NE) system phasic modes. Specifically, we may believe that occlusal balance symmetrization can determine, in the trigeminal/LC-NE mesencephalic nucleus pathway, a coerulean activation on the hypoactive occlusal side and a concomitant contralateral reduction which, moreover, could also determine a lower galanin release, normally hyperexpressed in AD, from noradrenergic terminations [23,24]. In fact, Hoogendijket al. have demonstrated through the determination of NE and of its 3-methoxy-4-hydroxyphenylglycol (MHPG) metabolite in different brain areas that a significant reverse relationship between the number of coerulean neurons and MHPG/NE ratio both in frontal cortex and in LC can be found in subjects affected by AD, while a significant rise of the MHPG/NE ratio indicates a consistently increased metabolism [25]. In addition to this hypothesi